Различные способы чистки медных и серебряных монет
Некоторые сведения об истории медных сплавов
Древние мастера по металлу не оставили описаний приемов обработки и составов сплавов, применявшихся для изготовления разных предметов. Такая литература появляется только в средневековье, но в ней названия сплавов и терминология не всегда поддаются расшифровке, поэтому источником сведений являются исключительно сами вещи. Существует множество работ, посвящённых результатам исследований древних предметов. Из них мы узнаем, что первое появление изделий из меди археологи относят к VII тыс. до н.э. Это были кованые предметы из самородной меди. Затем появляется металлургическая медь и сплавы меди с другими металлами. На протяжении нескольких тысячелетий в основном из меди и ее сплавов изготавливались различные предметы: орудия труда, оружие, украшения и зеркала, посуда, монеты. Составы древних сплавов весьма разнообразны, в литературе их условно называют бронза. К наиболее ранним относятся мышьяковистые и оловянистые бронзы. Кроме олова и мышьяка в древних сплавах часто присутствует свинец, цинк, сурьма, железо и другие элементы в виде микропримесей, которые попадали в металл с рудой. Состав сплава подбирался весьма рационально в зависимости от функционального назначения предмета и используемой техники изготовления. Так, для литья художественных изделий был выбран рецепт тройного сплава медь-олово-свинец, применявшийся в античной Греции, в Римской империи, на Ближнем и Среднем Востоке, в Индии; в Китае бронза была одним из самых распространенных сплавов. На литых предметах из такой бронзы со временем образуется красивая патина, которая в некоторых случаях сохраняется и на археологических предметах.
Сплавы получали не только из чистых металлов, но и путем смешивания различных руд, в результате чего получали такие сплавы как латунь и медно-никелевый сплав, за много веков до того как научились добывать металлический цинк и никель. Латунь впервые упоминается в VIII в. до н.э. Известный исследователь древних технологий Форбес считает, что народы Малой Азии первыми стали получать латунь. В новое время металлический цинк и латунь впервые получили в Англии лишь в 1738- г.
Большое значение при изготовлении вещей имел цвет металла ------- шлифовки и полировки. В средневековых источниках ------ называются по цвету: красная медь, латунь - желтая медь; зелёная медь - бронза, белая медь или белая бронза- светлые сплавы. С XVIII века в связи с развитием промышленности и возможностью получать различные металлы в чистом виде возникли новые композиции сплавов. Большое распространение получили сплавы, похожие по цвету на золото. Как правило, они состояли из меди, цинка и олова в разных соотношениях.
В зависимости от состава бронза условно делалась на медальную (монетную), в которой олова - 3-8%, цинка - 1%; пушечную, содержащую 10% олова; колокольную, в которой олова 20%, и зеркальную - 30% олова. В XVIII в. появились разнообразные сплавы на основе меди. Ормолу - разновидность латуни, в состав которой входят в равных частях медь и олово или только медь и цинк. Ормолу применялась главным образом для украшения французской мебели и мебели, выполненной во французском стиле. Иногда отливки из ормолу обрабатывали гравировкой или золотили. Гравированный рисунок делали более рельефным путем втирания черного пигмента. Латунь шла также для выделки самоваров, кофейников и других предметов домашнего обихода, осветительных приборов, ручек, кухонной утвари; некоторые предметы лудились. Латунь, содержащая до,10% цинка, называлась томпак. Она широко использовалась в XVIII веке для изготовления дешевых ювелирных украшений. Латунь с содержанием до 20% цинка называлась полутомпак, с 30% цинка - адмиралтейская латунь. Сплавы на медной основе мельхиор и нейзильбер - использовались как заменители серебра. В старой литературе нейзильбер иногда называется аргентан, варшавское серебро, иногда этим названием определяется посеребренная латунь. Отсутствие четкого соответствия названия составу привело к тому, что даже в справочной и специальной литературе позднего времени даны разные составы этих сплавов или разные названия одного сплава. Поэтому приводим определение этих двух похожих по внешнему виду сплавов, данное в Энциклопедическом словаре 1985 г. Мельхиор - сплав, изобретенный во Франции, содержит в своем составе медь главным образом с никелем (5-30%). Обладает высокой стойкостью на воздухе и в воде, хорошо обрабатывается.
Нейзильбер (буквально, новое серебро) - немецкий сплав, содержащий медь - основа, никель (5-35%) и цинк (13-45%). Обладает высокой коррозионной стойкостью и прочностью, удовлетворительной пластичностью.
Сплавом XX века является алюминиевая бронза с содержанием 5% алюминия. Этот сплав прекрасно обрабатывается и по цвету похож на золото. Иногда его называют французским золотом. Французким золотом называют также сплав, состоящий из 58% красной меди, 16% олова и 25% цинка, цветом и блеском действительно похожей на золото. Так называемый британский металл состоит из олова, сурьмы с добавлением меди. Этот сплав обладает прекрасными литейными свойствами, легко обрабатывается
инструментами, хорошо принимает полировку и не тускнеет на воздухе. Из него изготовляли в большом количестве предметы домашнего обихода.
Таким образом, видим, что по названию, которое дается в старых руководствах по обработке металлов и справочниках, определить состав и содержание в сплаве легирующих элементов сплава трудно.
Технология изготовления различных предметов из металла также претерпела эволюцию: первые изделия изготовлялись холодной ковкой, затем было освоено литье, сначала в открытую форму, затем в закрытую и., как наиболее развитая техника литья, литье по выплавляемым моделям; восковое литье в Египте было уже в III тыс. до н.э. Холодной ковке на смену пришла горячая ковка и использование термообработки для получения специальных свойств металлов. По-разному конструктивно оформлялись предметы, в определенный период появляется ковочная сварка, пайка, сочетание кованых и литых элементов. Предметы перестают иметь чисто утилитарное значение; украшаются насечкой и инкрустацией ножны и рукояти мечей и кинжалов, становятся нарядными элементы конской упряжи и снаряжения всадников, появляется художественно украшенная посуда. Получают развитие различные технические и ювелирные приемы работы с металлами. Нужно заметить, что все это уходит в глубокую древность. Так, в царских гробницах Ура (29 в. до н.э.) был найден золотой кинжал в ножнах, в декорировке которого применялись зернь и филигрань. С древнейших времен стали использовать украшение предметов из меди и медных сплавов другими металлами. Золотилась или серебрилась вся поверхность или выявлялся таким способом рисунок. Появляется инкрустация из золота и серебра. Некоторые предметы декоративно-прикладного искусства из металла имели искусственную патину. Первые опыты по патинированию металлов начались, видимо, в Европе с эпохи Возрождения, вдохновленной открытием античного искусства. Искусство барокко почти всегда предпочитало светлый блестящий металл. В предметах прикладного искусства в стиле рококо старались еще более усилить блеск, чистой бронзы обильным применением позолоты и сплавов, имитировавших золото. Золочение; было очень разнообразным., В ХVIII в. появляется матовое золочение, позолота различных оттенков. Иногда на одной вещи сочеталось матовое и блестящее золочение. Лишь в конце XVIII - нач. XIX в. искусственная патинировка опять входит в моду. Её вдохновителем явилась античность после раскопок Помпеи и Геркуланума. Своеобразное применение она нашла в стиле ам-пир. Патинировались отдельные детали бронзовых украшений мебели, часов, подсвечников. Почти всегда патинирование детали сочеталось с золочением. Плотная черно-зелекая патина, нанесённая без учета моделировки, полностью скрывала цвет металла. Массовое патинирование под старину началось с середины X века. В это время было создано большее число всех известных ныне способов патинировки. Кроме патинирования химическими веществами, применялись пигменты на связующем, масляное горячее патинирование, покрытие цветным лаком. Способы патинировки были секретом мастера или мастерской.
Коррозия меди и медных сплавов
Атмосферная коррозия. В атмосферных условиях медь и ее сплавы покрываются тонким равномерным слоем продуктов коррозии, Образование пленки - самозатухающий процесс, т.к. продукты коррозии защищают поверхность, металла от взаимодействия с внешней средой. Процесс образования пленки состоит из двух ровных стадий. Первая - образование первичной пленки, представляющей собой смесь оксидов и чистую закись меди. Время образования этого оксидного слоя - от нескольких месяцев до нескольких лет. С течением времени этот слой приобретает характерный для медных сплавов коричневый цвет. В отдельных случаях этот слой темнеет и может стать черным. При достижении некоторой толщины оксидного слоя на нем начинает образовываться зелёный слой солей меди. Наиболее вероятными химическими соединениями, образующимися на меди в результате коррозии, являются природные минералы. Цвет (состав и строение коррозийного слоя) зависит от присутствия в воздухе различных газов, твёрдых частиц разных веществ и др., а также от состава медного сплава.
В условиях музейного хранения процесс образования сложных по составу пленок на медных сплавах идёт чрезвычайно медленно. Тонкий и равномерный коррозионный слой покрывает всю поверхность, воспроизводя все мельчайше детали декоративной отделки, вплоть до гравировки. На выступающих деталях рельефа он стирается, и сквозь утоньшенный слой просвечивает поверхность металла. Образовавшийся на поверхности медного сплава слой, обладающей определенными физико-химическими свойствами, делающими его защитным и придающими различную окраску - от коричневой и черной до различных оттенков зеленой и голубой, называется патиной Цвет патины зависит не только от длительности взаимодействия с атмосферой и ее состава, но и от состава металла, качества его обработки, т.е. от внешних и внутренних факторов.
Все сформировавшиеся атмосферные патины содержат оксиды и соли. Окись меди - черного цвета, закись - красно-коричневого. Зеленые, синие и голубые цвета и оттенки патине придают различные медные минералы: сульфаты - брошантит, антлерит, средние сульфаты в виде кристаллогидратов с различным количеством кристаллизационной воды, которые являются промежуточными продуктами при образовании зеленой патины; карбонаты меди; малахит и азурит; нитраты; хлориды в виде атакамнта, паратакамита и боталлакита; иногда в патине обнаруживают хлористую медь и кристаллогидрат хлорной меди. Практически все оксиды и соли меди, образующие патину, нерастворимы в воде, негигроскопичны, нейтральны по отношению к металлической меди, за исключением хлористой меди, т.е. патина является естественной защитной и декоративной пленкой.
Почвенная коррозия меди и ее сплавов. Коррозионные продукты на археологических изделиях из меди и медных сплавов имеют более сложный состав и строение. В основном они содержат продукты коррозии меди - медные оксиды и соли, как основы слоя, меньше - оксид олова; продуктов коррозии других элементов входящих в состав сплава, как правило, на поверхности предмета не обнаруживают. Коррозионное наслоение имеет слоистое строение с четко выраженными границами слоев. Однако СЛОИ НЕ ПЕРЕКРЫВАЮТ всю поверхность, а располагаются на отдельных участках. . Порядок расположения слоев устойчив. Наружный слой состоит ИЗ углекислых солей меди, соединенных с почвой и органическими остатками. Эти слои, идентичные по своему составу природному минералу малахиту, имеют бугристую неровную поверхность. Малахит часто смешан с азуритом синего цвета. Кроме углекислых солей, во внешнем слое содержится хлорная медь-атакамит. Иногда атакамит образует основную часть внешнего слоя, иногда отдельные пятна светло-зеленого цвета. Наружный слой продуктов коррозии на бронзе устойчив и при изменении внешних условий, например, при извлечении из почвы, превращений в нем не происходит.
Следующий слой, примыкающий к сохранившемуся металлу, отличается от внешнего и по цвету, и по кристаллическому строению, и по фактуре. Он красно-коричневого цвета. Основу этого образует минерал куприт, представляющий собой закись меди. Куприт очень тверд и хрупок. В куприте наблюдаются включения окиси меди черного цвета. Толщина такого оксидного слоя различна. Иногда вся сердцевина предмета состоит из оксидов с незначительными вкраплениями сохранившегося металла. В отдельных случаях куприт повторяет мельчайшие подробности рельефа.
Однако очень редко куприт образует сплошной слой на поверхности предмета, изолируя нижележащий металл, чаще он имеет трещины и полости.
В некоторых случаях под слоем куприта, а иногда и заменяя его, располагается прослойка металлической восстановленной меди, которая образуется в результате восстановительных процессов из медных солей при электрохимической коррозии. Вос-становленная медь может образовывать СПЛОШНОЙ СЛОЙ, так что при очистке создается обманчивое впечатление обнаженного металлического ядра. Иногда восстановленная медь залегает чешуйками, которые при очистке легко снимаются механически.
Между слоем восстановленной меди или куприта и металла расположена наиболее активная, нестабильная медная соль, ХИМИЧЕСКИ неустойчивая и очень гигроскопичная - хлористая медь. Хлористая медь самая опасная коррозионная составляющая археологической бронзы, которая при взаимодействии с влагой окисляется и гидролизуется, превращаясь в зеленую основную хлорную медь атакамит. При этом в реакцию вовлекается металлическая медь, еще не разрушенная коррозией. Хлористая медь обычно серого или белого цвета, иногда окрашена примесями в зеленоватый цвет. За минерализованным слоем идет частично корродированный металл, коррозия в нем развивается по отдельным, наименее коррозионно стойким структурным составляющим. На оловянистой бронзе наблюдаются локальные выделения продуктов коррозии оловян-ной составляющей бронзы - двуокиси олова, которая соответствует минералу касситериту. Таким образом, характерной особенностью почвенной коррозии медных сплавов является образование слоев. Толщина коррозионного слоя различна: от долей миллиметра (при сохранившемся металлическом ядре) до того предельного случая разрушения, когда весь металл оказывается минерализованным.
Очень редко коррозионный слой на археологической бронзе бывает тонким и плотным, оливково-зеленого, зелено-голубого оттенков, и производит впечатление специально нанесенного. По составу такая благородная патина не отличается от грубых наслоений продуктов коррозии. Образование такого слоя требует, видимо, особых внешних условий и высокого качества обработки металла. Как правило, такая патина очень тверда и прочно держится на поверхности металла. Этот слой изолирует предмет от внешних воздействий. Однако даже благородная патина может содержать активную хлористую медь, которая даст рецидив коррозии в подходящих для ее развития условиях.
Внешний вид археологических предметов из меди и ее сплавов различен. Наблюдается устойчивая зависимость между видом разрушения, составом и способом изготовления предмета. Особый вид патины образуется на литых высокооловянистых бронзах, со-держащих небольшие, порядка нескольких процентов, добавки свинца (например, китайские зеркала). Поверхность таких-предметов покрыта гладким светло-серым слоем, иногда ошибочно принимаемым за серебрение. Обманчивое впечатление золочения создается за счет сохранения на отдельных участках поверхности зеркал и посуды, металл которых содержит более 20% олова, блестящей поверхности золотистого цвета в сочетании с бугристыми зелеными участками поверхности.
Большинство медных сплавов склонны к межкристаллической коррозии. Она характеризуется разрушением металла по границам кристаллитов. При этом прочность металла уменьшается, он становится хрупким, оставаясь внешне крепким. На предметах, найденных при археологических раскопках, часто наблюдаются трещины, которые образуются в результате неравномерной коррозии, происходящей преимущественно в местах концентрации напряжений.
По степени сохранности археологические предметы из медных сплавов можно условно разделить на следующие группы:
I) предметы, покрытые благородной патиной
2) предметы, сочетающие благородную патину и бугристые или рыхлые коррозионные образования;
3)
предметы из частично минерализованного металла, в котором сохранилось металлическое ядро, покрытое слоем продуктов коррозии; в такой сохранности чаще бывают литые бронзовые предметы и латунь, в том числе и кованая;
4) практически полностью минерализованный металл, основная масса которого превра-тилась в твердый и хрупкий куприт, содержащий незначительные включения сохранившегося металла. Предметы; минерализованные таким образом, бывают фрагментированы из-за хрупкости куприта или с трещинами; поверхность их покрыта неравномерными по толщине сине-зелеными продуктами коррозии;
5) предметы, в которых всю массу составляют рыхлые, светло-зеленые, полностью деструктированные продукты коррозии. В таком состоянии часто бывает тонкая чеканная и кованая бронза и медь, покрытая золотом.
Бронзовая болезнь. Особым случаем разрушения медных сплавов является рецидивная коррозия, называемая бронзовой болезнью , которая может возникать как на археологических предметах из меда и ее сплавов, так и на музейных предметах при хранении вне зависимости от того, были такие предметы очищены или нет. Первыми признаками заболевания являются появляющиеся на поверхности предмета характерные ярко-зеленые пятнышки рыхлого вещества. На очаге бронзовой болезни образуются капельки влаги, так как эти продукты коррозия гигроскопичны. Постепенно эти очаги разрастаются, покрывая все большие участки поверхности а, главное, разрушение идет вглубь металла, образуй каверну, заполненную рыхлым сыпучим веществом. После удаления этих продуктов коррозии поверхность оказывается сильно изъязвленной. Разрушение может идти с такой скоростью, что тонкий предмет оказывается полностью разрушенным за несколько месяцев. Какие же причины вызывают появление такой болезни? Их две.
Во-первых, повышенная влажность и, во-вторых, наличие на поверхности металла активаторов коррозии. Один из самых опасных активаторов - хлорид. Хлорид может попасть на поверхность музейного металла с пылью, при неправильной профилактической очистке, от соприкосновения с незащищенными руками, из загрязненной атмосферы. Инициатором коррозии являются остатки формовочной массы, плохо удаленные из внутренних полостей литых предметов. Очаги активной коррозии - хлористой меди - могут находиться на археологических предметах из медных сплавов при наличии на первый взгляд совершенно доброкачественного плотного слоя патины на поверхности сохранившегося металла. Рецидивная коррозия развивается, если изделие подвергается действию паров кислот, которые образуют с медью различные соединения, например, уксусной кислоты, выделяющейся из дерева витрин или ящиков в хранилище. Известен случай вспышки бронзовой - болезни египетского металла в Кембриджском музее, описанный известным ученым-коррозионистом Ю.Р.Эвансом, который разрабатывал специально для этого случая методику реставрации. После эвакуации во время войны вещи транспортировались в деревянной таре из сырого дерева. Пары уксусной кислоты, выделяющиеся из сырой древесины, проникая через дефекты в патине, реагируют с медным сплавом, образуя растворимую уксуснокислую медь, которая в свою очередь превращается под действием кислорода воздуха в основной карбонат. Образующаяся в результате реакции уксусная кислота снова реагирует с металлом. Реакция, таким образом, может идти до полного разрушения предмета.
Свойства меди и продуктов ее коррозии
Медь представляет собой тяжелый металл красного цвета, обладающий очень высокой тягучестью и ковкостью. Атомная масса меди 63,54; плотность 8,9 г/см2, температура плавления 1083°С. С различными элементами медь легко образует сплавы. В ряду напряжений металлов медь стоит правее водорода, нормальный электродный потенциал близок к потенциалу благородных металлов , поэтому химическая активность меди невелика. В нейтральной воде на поверхности меди образуется защитная пленка, которая приостанавливает дальнейшее окисление. При отсутствии кислорода и других окислителей медь не растворяется при комнатной температуре в серной кислоте при концентрации до 80%, в горячей серной кислоте медь растворяется при концентрации выше 80%. В азотной кислоте медь растворяется. В растворах соляной кислоты без доступа воздуха медь медленно окисляется, в присутствии воздуха медь реагирует с соляной кислотой очень быстро. Наличие в воздухе паров очень летучей СОЛЯНОЙ КИСЛОТЫ вызывает активную коррозию меди. Медь реагирует с растворами аммиака, хлористого аммония. Медь очень устойчива по отношению к щелочам. В растворах, щелочей на ее поверхности образуются пленки гидратированных оксидов меди, плохо растворимых в щелочах и защищающих металл от дальнейшего действия щелочи. Высока стойкость меди в различных органических растворителях. Химические свойства медных сплавов практически такие же, как у меди. Химическая активность основных составляющих продуктов коррозии на меди и медных сплавах следующая: закись меди куприт, красно-коричневого цвета, не растворяется ни в холодной, ни в горячей воде; при продолжительном кипячении медленно переходит в черную окись меди. В щелочах плохо растворяется, реагирует с кислотами. В холодной разбавленной серной кислоте разлагается с образованием металлической меди в виде мелкодисперсных частиц красно-коричневого цвета, в горячих растворах серной кислоты медленно переходит в раствор в виде средних и кислых сернокислых солей. В муравьиной кислоте растворяется плохо. Растворяется в растворах аммиака, углекислого аммония и трилона Б с образованием прочных комплексных соединений. Окись меди нерастворима ни в холодной, ни в горячей воде. Не реагирует с щелочами. Реагирует с кислотами. В растворах аммиака, углекислого аммония и в щелочном растворе сегнетовой соли практически не растворяется. Основная углекислая медь, малахит зеленого цвета, при 200°С разлагается на воду и черную окись меди. В холодной воде нерастворима, в горячей воде при кипячении разлагается с образованием окиси. В щелочах частично растворяется, частично переходит в синий гидрат окиси, быстро разлагающийся на воду и окись меди. В кислотах растворяется с бурным выделением углекислого газа. Легко растворяется в растворах углекислого аммония, аммиака и щелочном растворе сегнетовой соли.
Основная углекислая медь, азурит, синего цвета. Реакции те же, что и у малахита.
Основная сернокислая медь, синего цвета. Не растворяется ни в холодной, ни в горячей воде. Легко растворяется в кислотах, в растворах углекислого аммония и аммиака. В щелочи переходит в нерастворимый синий гидрат окиси, который разлагается с образованием окиси меди. Растворяется в щелочном растворе сегнетовой СОЛИ.
Хлористая медь бесцветная. Гигроскопична, в химическом отношении неустойчива. В холодной воде практически не растворяется. При нагревании медленно гидролизуется, образуя гидрат закиси, который затем разлагается на закись меди и воду. Растворяется в растворах углекислого аммония и аммиака. Хорошо растворяется В СОЛЯНОЙ кислоте и медленно - в муравьиной. В серной кислоте растворяется частично. В горячих растворах щелочей частично растворяется, остаток переходит в окись меди.
Основная хлорная медь, зеленого цвета» негигроскопична, нерастворима в холодной воде. При кипячении медленно разлагается с образованием черной закиси меди. Легко растворяется в кислотах, в растворах аммиака, углекислого аммония, в щелочном растворе сегнетовой соли. В щелочах частично растворяется, частично переходит в синий гидрат окиси, а затем в черную окись меди.